
http://blog.shibby.fr Rev. 09/21/16 @ 21:50

Bricked WiFi device reflashing guide

You might have an outdated version of this document. I recommend you to check for updates if you did not download this file from my blog: http://blog.shibby.fr.
Comments, suggestions and corrections are more than welcome. Please send me an e-mail if you think that this document can be improved: b 1 l a o b g c @ d s e h f i g b h b i y. j f k r
(the e-mail address has been intentionally scrambled to avoid spam, do not copy & paste it)

1. Bill of materials

Here is what you will need to reprogram the corrupted Flash memory:

Universal programmer TSOP48 (most common package) to DIP adapter

I've used the picture of a Topmax 2 universal programmer because this is what I own, and I've been able to successfully reflash all chips with it so far. The supported
devices list is pretty huge, but sometimes I need to find a close reference or an equivalent chip from another manufacturer in this list. The PC software “Max Loader”
is available for free at EETools: http://eetools.com/index.cfm?fuseaction=category.display&category_id=38, so you can already check if you can reprogram your
Flash memory before buying one of these devices. An other solution is to ask your local electronics shop if they can provide this service, or use a programmer at
your university or at work. The price of these programmers is kinda expensive and it's not worth buying one just to unbrick a cheap WiFi device.
The TSOP adapter is a cheap one bought on ebay a few years ago. You should check aliexpress too if you plan to buy one.

Links to the files mentioned in this document are listed in Annex B.
This guide may also apply to other embedded devices.

Page 1 of 7

http://blog.shibby.fr/index.php?category/Radio
http://eetools.com/index.cfm?fuseaction=category.display&category_id=38
mailto:daebvc@dsehfigbhbiy.jfkr
mailto:daebvc@dsehfigbhbiy.jfkr
mailto:daebvc@dsehfigbhbiy.jfkr
mailto:daebvc@dsehfigbhbiy.jfkr
mailto:daebvc@dsehfigbhbiy.jfkr
mailto:daebvc@dsehfigbhbiy.jfkr
mailto:daebvc@dsehfigbhbiy.jfkr
mailto:daebvc@dsehfigbhbiy.jfkr
mailto:daebvc@dsehfigbhbiy.jfkr
mailto:daebvc@dsehfigbhbiy.jfkr
mailto:daebvc@dsehfigbhbiy.jfkr
mailto:daebvc@dsehfigbhbiy.jfkr
mailto:daebvc@dsehfigbhbiy.jfkr
mailto:daebvc@dsehfigbhbiy.jfkr
mailto:daebvc@dsehfigbhbiy.jfkr
mailto:daebvc@dsehfigbhbiy.jfkr
mailto:daebvc@dsehfigbhbiy.jfkr
mailto:daebvc@dsehfigbhbiy.jfkr
mailto:daebvc@dsehfigbhbiy.jfkr
mailto:daebvc@dsehfigbhbiy.jfkr
mailto:daebvc@dsehfigbhbiy.jfkr
mailto:daebvc@dsehfigbhbiy.jfkr
mailto:daebvc@dsehfigbhbiy.jfkr
http://blog.shibby.fr/
http://dl.shibby.fr/blog.shibby.fr/WiFi/Bricked_WiFi_device_reflashing_guide.pdf

http://blog.shibby.fr Rev. 09/21/16 @ 21:50

2. Read and save the Flash memory

This might sound silly since its content is corrupted, but it can be useful if you can't find a working image. This image is a perfect copy of a non corrupted Flash
memory for your device's particular hardware (same revision).
It's really important to keep a copy of the actual Flash content before doing anything else with it.

3. Get an image for the Flash

3.1.Search on forums

None of the manufacturers provide such files. You will have to crave unofficial forums and try to find someone who made that kind of copy. The chances to find this
image will be very weak if your device is not one of the very popular ones.

3.2. Build it yourself

This is why keeping a copy of your corrupted flash is important.
Let me give you a concrete example: a corrupted Flash from a WRE54G V1.0 WiFi repeater.
I got two of these devices from someone who contacted me after reading a tutorial I poster a few years ago, explaining how I repaired my bricked WAP54G V1.0 (I'll
get back to that device in Annex A).
The following messages was sent on its serial port console right after booting with the CFE (Common Firmware Environment):

Device eth0: hwaddr xx-xx-xx-xx-xx-xx, ipaddr 192.168.1.245, mask 255.255.255.0
gateway not set, nameserver not set
Boot program checksum is invalid
Reading :: Failed.: Error
CFE>

It's been quite tricky to reprogram the WRE54G V1.0 since nobody could provide an image. The only file I've been able to find was a CFE image, which only
contains the boot program that starts the embedded Linux application. The CFE alone is useless since it seemed to run fin on both devices, but it helped me to
define the Flash memory mapping, and see where (at which address) the Linux part is located in the chip. So I've compared the content of the corrupted memory
with the CFE and here is what I've found:

Page 2 of 7

http://blog.shibby.fr/index.php?category/Radio

http://blog.shibby.fr Rev. 09/21/16 @ 21:50

Both file's content were exactly identical from address 0x0 to 0x3FFFF.
Since there was nothing else in the CFE file (cfe.bin), I could affirm that this first
block was reserved to the CFE and was not corrupted, so what bricked the
repeater was only a bad firmware upgrade.
The difference, shown in red, starts at address 0x40000 on the corrupted flash
memory (flashDump.bin).
It was still quite hard to understand how to repair the repeater at this point. So
I've searched for a firmware update file with my favourite search engine. These
files are supposed to be used with device's web interface only, to reprogram the
Flash, which requires a working device.
I've opened the official firmware update to see if I could do anything with it, and
found something familiar:

Page 3 of 7

http://blog.shibby.fr/index.php?category/Radio

http://blog.shibby.fr Rev. 09/21/16 @ 21:50

Things started to be a lot more clear when I saw that character string: HDR0.
I've assumed that the preceding data between addresses 0x0 and 0x07 was just some kind of checksum, or header needed by the web interface to check whether
the file can be used on this device or not, and would then be useless in my case. So I've replaced everything from address 0x4000 on the corrupted Flash with the
content of the official file from Linksys, starting from address 0x8 to the end of the file,
This may not be clear to everyone, so to make it simple, I've created a new file called “WRE54G_Linksys_ Official_Latest_Version.bin”, containing the CFE followed
by a truncated copy of the official firmware update file, just like it looks to be in the corrupted Flash.

A quick comparison did not show a lot of similarities in the Linux memory block, but I used this new
file anyway to reprogram the Flash. And guess what? It worked!

CFE version 1.0.37 for BCM947XX (32bit,SP,LE)
Build Date: Mon Apr 12 17:57:52 CST 2004 (vlinux@Test)
Copyright (C) 2000,2001,2002,2003 Broadcom Corporation.

Initializing Arena.
Initializing Devices.
et0: Broadcom BCM47xx 10/100 Mbps Ethernet Controller 3.50.21.0
CPU type 0x29007: 200MHz
Total memory: 0x2000000 bytes (32MB)

Total memory used by CFE: 0x8032BA00 - 0x80430F00 (1070336)
Initialized Data: 0x8032BA00 - 0x8032DB50 (8528)
BSS Area: 0x8032DB50 - 0x8032EF00 (5040)
Local Heap: 0x8032EF00 - 0x8042EF00 (1048576)
Stack Area: 0x8042EF00 - 0x80430F00 (8192)
Text (code) segment: 0x80300000 - 0x80309420 (37920)
Boot area (physical): 0x00431000 - 0x00471000
Relocation Factor: I:00000000 - D:00000000

Device eth0: hwaddr 00-90-4C-60-04-00, ipaddr 192.168.1.240, mask 255.255.255.0
 gateway not set, nameserver not set
Loader:raw Filesys:raw Dev:flash0.os File: Options:(null)
Loading: 1437696 bytes read
Entry at 0x80001000
Closing network.
Starting program at 0x80001000
CPU revision is: 00029007
Primary instruction cache 8kb, linesize 16 bytes (2 ways)
Primary data cache 4kb, linesize 16 bytes (2 ways)
Linux version 2.4.20 (vic_yu@cvs.gemtek.com.tw) (gcc version 3.2.3 with Broadcom modifications) #327 Wed Sep 22 12:03:33 CST 2004
Determined physical RAM map:
 memory: 00800000 @ 00000000 (usable)
On node 0 totalpages: 2048
zone(0): 2048 pages.
zone(1): 0 pages.
zone(2): 0 pages.
Kernel command line: root=/dev/mtdblock2 noinitrd console=ttyS0,115200
CPU: BCM4712 rev 1 at 200 MHz
Calibrating delay loop... 199.47 BogoMIPS
Memory: 6476k/8192k available (1218k kernel code, 1716k reserved, 108k data, 60k init, 0k highmem)
Dentry cache hash table entries: 1024 (order: 1, 8192 bytes)
Inode cache hash table entries: 512 (order: 0, 4096 bytes)
Mount-cache hash table entries: 512 (order: 0, 4096 bytes)
Buffer-cache hash table entries: 1024 (order: 0, 4096 bytes)
Page-cache hash table entries: 2048 (order: 1, 8192 bytes)
Checking for 'wait' instruction... unavailable.
POSIX conformance testing by UNIFIX
PCI: Fixing up bus 0
PCI: Fixing up bridge
PCI: Fixing up bus 1
Linux NET4.0 for Linux 2.4
Based upon Swansea University Computer Society NET3.039
Initializing RT netlink socket
Starting kswapd
devfs: v1.12c (20020818) Richard Gooch (rgooch@atnf.csiro.au)
devfs: boot_options: 0x1
Serial driver version 5.05c (2001-07-08) with MANY_PORTS SHARE_IRQ SERIAL_PCI enabled
ttyS00 at 0xb8000300 (irq = 3) is a 16550A
ttyS01 at 0xb8000400 (irq = 0) is a 16550A
PPP generic driver version 2.4.2
Flash device: 0x200000 at 0x1c000000
Physically mapped flash: cramfs filesystem found at block 855
Creating 4 MTD partitions on "Physically mapped flash":
0x00000000-0x00040000 : "pmon"
0x00040000-0x001f0000 : "linux"
0x000d5f0c-0x001f0000 : "rootfs"
0x001f0000-0x00200000 : "nvram"
sflash: found no supported devices
NET4: Linux TCP/IP 1.0 for NET4.0
IP Protocols: ICMP, UDP, TCP
IP: routing cache hash table of 512 buckets, 4Kbytes
TCP: Hash tables configured (established 512 bind 1024)
ip_conntrack version 2.1 (64 buckets, 512 max) - 344 bytes per conntrack
ip_tables: (C) 2000-2002 Netfilter core team
ipt_time loading
NET4: Unix domain sockets 1.0/SMP for Linux NET4.0.
NET4: Ethernet Bridge 008 for NET4.0
VFS: Mounted root (cramfs filesystem) readonly.
Mounted devfs on /dev
Freeing unused kernel memory: 60k freed
Using /lib/modules/2.4.20/kernel/drivers/net/et/et.o
Using /lib/modules/2.4.20/kernel/drivers/net/wl/wl.o
Hit enter to continue...lo: File exists
No interface specified. Quitting...
FirmwareVersion=<>
lan_mac=<>
lan_hwaddr=<>
start easyconf and mac writer
Hit enter to continue...Hit enter to continue...Hit enter to continue...Hit enter to continue...

Page 4 of 7

http://blog.shibby.fr/index.php?category/Radio

http://blog.shibby.fr Rev. 09/21/16 @ 21:50

4. Flash Reprogramming

Now that you have a consistent image file, it's time to reprogram the Flash.
I had to select another device name to reprogram the WRE54G's Flash memory: E28F160 instead of TE28F160. Don't hesitate to try it too if you can't find the right
device.

As you can see, the “Auto” button takes care of everything: erasing, blank checking, programming and verifying. If everything goes well, as on this screenshot, you
can then resolder the chip and admire your work.

Page 5 of 7

http://blog.shibby.fr/index.php?category/Radio

http://blog.shibby.fr Rev. 09/21/16 @ 21:50

Annex A: unbricking the WAP54G V1.0

I have to admit that I wasn't that smart when I bricked my WAP54G. Hopefully, I found someone on an unofficial Linksys forum who got a copy of his Flash memory.
That's what helped me to unbrick my access point. The tutorial is available here [Fr].
I had to unbrick an other WAP54G V1.0 recently, and my researches led me to analyse some official firmware versions from Linksys. Despite official “.trx” for
WRE54G, the “.trx” file for the WAP54G has no header and starts with the HDR0 string at address 0x0.
The boot part is also located from address 0x0 to 0x3FFF, and the Linux part also starts at address 0x4000 with HDR0.

On working devices running an official firmware, you must go to http://[your.WAP54G.IP.address]/fw-conf, select “Disable” for both “Firmware Header” and
“DownGrade Header” then click “Apply”. Otherwise, you won't be able to use an alternative firmware, such as dd-wrt.
This page is available on the official Linksys version 2.08 for instance:

Page 6 of 7

http://blog.shibby.fr/index.php?category/Radio
http://todd.terry.free.fr/-/wiki/wakka.php?wiki=ResurrectionWAP54Gv1

http://blog.shibby.fr Rev. 09/21/16 @ 21:50

Annex B: Links

• Hexadecimal comparator
◦ VBinDiff (This is a DOS software. Usage: VBinDiff.exe FILE1 [FILE2])

• Hexadecimal editor
◦ HxD

• WRE54G V1.0
◦ Flash image file

▪ WRE54G_Linksys_Official_Latest_Version.bin (This file must only be used to reprogram the flash chip with the universal programmer!)
◦ CFE file

▪ cfe.bin (for informational purposes only)
◦ Genuine Linksys firmwares

▪ WRE54G-EU_1.05.08-hdr.trx
▪ LinksysWRE54G_1.06.05-hdr.trx

◦ dd-wrt versions (only use these files to upgrade from the web interface, don't use them with the universal programmer!)
▪ dd-wrt.v24_micro_generic_13064.bin
▪ dd-wrt.v24_micro_generic_14896.bin (actually I did brick a repeater with one of the 14896 builds, but I may have made a mistake)
▪ dd-wrt.v24_micro_olsrd_generic_14896.bin (actually I did brick a repeater with one of the 14896 builds, but I may have made a mistake)
▪ Picture showing build 14896 working on a WRE54G V1 (source: http://www.dd-wrt.com/phpBB2/viewtopic.php?p=525444)

• WAP54G V1.0
◦ Flash image file

▪ FlashWAP54G-V10(BoardWX5541_V00)(Mustdie).BIN (This file must only be used to reprogram the flash chip with the universal programmer!)
◦ Genuine Linksys firmware

▪ WAP54G-fw2.08.08.trx
◦ dd-wrt version (only use this file to upgrade from the web interface, don't use it with the universal programmer!)

▪ WAP54G_V1.0_dd-wrt.v24-13064_VINT_micro.bin

• EETools' universal programmer software
◦ Max Loader

These are mirrored files, to avoid broken links as long as my website is online.

Page 7 of 7

http://blog.shibby.fr/index.php?category/Radio
http://dl.shibby.fr/blog.shibby.fr/Softwares/EETOOLS/MaxLoader.zip
http://dl.shibby.fr/blog.shibby.fr/WiFi/WAP54GV1_0/WAP54G_V1.0_dd-wrt.v24-13064_VINT_micro.bin
http://dl.shibby.fr/blog.shibby.fr/WiFi/WAP54GV1_0/WAP54G-fw2.08.08.trx
http://dl.shibby.fr/blog.shibby.fr/WiFi/WAP54GV1_0/FlashWAP54G-V10(BoardWX5541_V00)(Mustdie).BIN
http://www.dd-wrt.com/phpBB2/viewtopic.php?p=525444
http://dl.shibby.fr/blog.shibby.fr/WiFi/WRE54GV1_0/WorkingOrNot/screen_shot_2011_01_14_at_103114_am_120.png
http://dl.shibby.fr/blog.shibby.fr/WiFi/WRE54GV1_0/WorkingOrNot/dd-wrt.v24_micro_olsrd_generic_14896.bin
http://dl.shibby.fr/blog.shibby.fr/WiFi/WRE54GV1_0/WorkingOrNot/dd-wrt.v24_micro_generic_14896.bin
http://dl.shibby.fr/blog.shibby.fr/WiFi/WRE54GV1_0/dd-wrt.v24_micro_generic_13064.bin
http://dl.shibby.fr/blog.shibby.fr/WiFi/WRE54GV1_0/LinksysWRE54G_1.06.05-hdr.trx
http://dl.shibby.fr/blog.shibby.fr/WiFi/WRE54GV1_0/WRE54G-EU_1.05.08-hdr.trx
http://dl.shibby.fr/blog.shibby.fr/WiFi/WRE54GV1_0/cfe.bin
http://dl.shibby.fr/blog.shibby.fr/WiFi/WRE54GV1_0/WRE54G_Linksys_Official_Latest_Version.bin
http://dl.shibby.fr/blog.shibby.fr/Softwares/HEX_BIN/HxDSetupEN.zip
http://dl.shibby.fr/blog.shibby.fr/Softwares/HEX_BIN/VBinDiff-3.0_beta4.zip

